Researchers Upend AI Status Quo By Eliminating Matrix Multiplication In LLMs
The paper doesn’t provide power estimates for conventional LLMs, but this post from UC Santa Cruz estimates about 700 watts for a conventional model. However, in our experience, you can run a 2.7B parameter version of Llama 2 competently on a home PC with an RTX 3060 (that uses about 200 watts peak) powered by a 500-watt power supply. So, if you could theoretically completely run an LLM in only 13 watts on an FPGA (without a GPU), that would be a 38-fold decrease in power usage. The technique has not yet been peer-reviewed, but the researchers — Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng Zhou, and Jason Eshraghian — claim that their work challenges the prevailing paradigm that matrix multiplication operations are indispensable for building high-performing language models. They argue that their approach could make large language models more accessible, efficient, and sustainable, particularly for deployment on resource-constrained hardware like smartphones. […]
The researchers say that scaling laws observed in their experiments suggest that the MatMul-free LM may also outperform traditional LLMs at very large scales. The researchers project that their approach could theoretically intersect with and surpass the performance of standard LLMs at scales around 10^23 FLOPS, which is roughly equivalent to the training compute required for models like Meta’s Llama-3 8B or Llama-2 70B. However, the authors note that their work has limitations. The MatMul-free LM has not been tested on extremely large-scale models (e.g., 100 billion-plus parameters) due to computational constraints. They call for institutions with larger resources to invest in scaling up and further developing this lightweight approach to language modeling.
Read more of this story at Slashdot.