US NIST Unveils Winning Encryption Algorithm For IoT Data Protection
ASCON was eventually picked as the winner for being flexible, encompassing seven families, energy efficient, speedy on weak hardware, and having low overhead for short messages. NIST also considered that the algorithm had withstood the test of time, having been developed in 2014 by a team of cryptographers from Graz University of Technology, Infineon Technologies, Lamarr Security Research, and Radboud University, and winning the CAESAR cryptographic competition’s “lightweight encryption” category in 2019.
Two of ASCON’s native features highlighted in NIST’s announcement are AEAD (Authenticated Encryption with Associated Data) and hashing. AEAD is an encryption mode that provides confidentiality and authenticity for transmitted or stored data, combining symmetric encryption and MAC (message authentication code) to prevent unauthorized access or tampering. Hashing is a data integrity verification mechanism that creates a string of characters (hash) from unique inputs, allowing two data exchange points to validate that the encrypted message has not been tampered with. Despite ASCON’s lightweight nature, NIST says the scheme is powerful enough to offer some resistance to attacks from powerful quantum computers at its standard 128-bit nonce. However, this is not the goal or purpose of this standard, and lightweight cryptography algorithms should only be used for protecting ephemeral secrets. For more details on ASCON, check the algorithm’s website, or read the technical paper (PDF) submitted to NIST in May 2021.
Read more of this story at Slashdot.